
HTB — Soulmate 

I scanned the box, found SSH and a web server, and discovered a CrushFTP 

instance on a subdomain. I abused an auth bypass in that CrushFTP build to 

create an account, uploaded a web shell, and gained a low-privilege web 

foothold as www-data. From there I found a hard-coded SSH password in 

an Erlang startup script, SSHed in as ben, and discovered an Erlang SSH 

service on port 2222 running as root. Dropping into the Erlang shell and 

using its command API let me run OS commands as root and read the root 

flag. 

Recon 

I started simple: port scan, hosts file entry, directory fuzzing, and 

subdomain enumeration. The main site looked like a dating app, but the ftp 

subdomain stood out — it was running CrushFTP and the version string 

matched a known auth bypass. 

Web findings and foothold 

The CrushFTP instance allowed me to register or create an account because 

of the version-specific issue. With that account I poked around the exposed 

directories until I found an upload area for the web production site. I 

uploaded a web shell and triggered it to get a shell as the web user (www-

data). 

Local enumeration and user takeover 

From the web shell I ran the usual enumeration checks and a quick 

privilege-escalation audit. That flagged an Erlang process started by a 

system script. The startup script contained a plaintext credential for the 

local user ben. Using that password I SSHed in as ben, grabbed the user 

flag, and kept looking. 



Erlang service and privilege escalation 

There was an Erlang SSH service listening on port 2222 that accepted ben’s 

credentials and dropped me into an Erlang shell running with root 

privileges. Erlang exposes an API that can execute OS commands; I used 

that capability to run commands as root and read the root flag in /root. 

Takeaways 

• Don’t stop at the main hostname — subdomains can host completely 

different services with different risks. 

• Version info in web assets is valuable. If a component’s build/version 

lines up with a published vulnerability, it’s worth investigating. 

• Plaintext or hardcoded credentials in scripts and startup files are 

“one-click” compromises if you find them. 

• Less-common runtimes (Erlang, Elixir, etc.) can expose powerful 

execution primitives that are easy to miss during basic audits. 

 

— MalwareMusashi 

 


